Calculation of Band Edge Eigenfunctions and Eigenvalues of Periodic Potentials through the Quantum Hamilton - Jacobi Formalism

نویسنده

  • Sree Ranjani
چکیده

X iv :q ua nt -p h/ 03 12 04 1v 1 4 D ec 2 00 3 Calculation of Band Edge Eigenfunctions and Eigenvalues of Periodic Potentials through the Quantum Hamilton Jacobi Formalism ∗ S. Sree Ranjani , A.K. Kapoor ‡ and P.K. Panigrahi § a School of Physics, University of Hyderabad, Hyderabad 500 046, India b Physical Research Laboratory Navrangpura, Ahmedabad, 380009, India Abstract We obtain the band edge eigenfunctions and the eigenvalues of solvable periodic potentials using the quantum Hamilton Jacobi formalism. The potentials studied here are the Lamé and the associated Lamé which belong to the class of elliptic potentials. The formalism requires an assumption about the singularity structure of the quantum momentum function p, which satisfies the Riccati type quantum Hamilton Jacobi equation, p2 − ih̄ d dx p = 2m(E − V (x)) in the complex x plane. Essential use is made of suitable conformal transformations, which leads to the eigenvalues and the eigenfunctions corresponding to the band edges in a simple and straightforward manner. Our study reveals interesting features about the singularity structure of p, responsible in yielding the band edge eigenfunctions and eigenvalues.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bound States and Band Structure - a Unified Treatment through the Quantum Hamilton - Jacobi Approach

We analyze the Scarf potential, which exhibits both discrete energy bound states and energy bands, through the quantum Hamilton-Jacobi approach. The singularity structure and the boundary conditions in the above approach, naturally isolate the bound and periodic states, once the problem is mapped to the zero energy sector of another quasi-exactly solvable quantum problem. The energy eigenvalues...

متن کامل

Bound State Wave Functions through the Quantum Hamilton-Jacobi Formalism

The bound state wave functions for a wide class of exactly solvable potentials are found utilizing the quantum Hamilton-Jacobi formalism. It is shown that, exploiting the singularity structure of the quantum momentum function, until now used only for obtaining the bound state energies, one can straightforwardly find both the eigenvalues and the corresponding eigenfunctions. After demonstrating ...

متن کامل

Shape Invariance and the Exactness of Quantum Hamilton-Jacobi Formalism

Quantum Hamilton-Jacobi Theory and supersymmetric quantum mechanics (SUSYQM) are two parallel methods to determine the spectra of a quantum mechanical systems without solving the Schrödinger equation. It was recently shown that the shape invariance, which is an integrability condition in SUSYQM formalism, can be utilized to develop an iterative algorithm to determine the quantum momentum functi...

متن کامل

Shape Invariance and the Quantum Hamilton-Jacobi formalism - II

Quantum Hamilton-Jacobi Theory and supersymmetric quantum mechanics (SUSYQM) are two parallel methods to determine the spectra of a quantum mechanical systems without solving the Schrödinger equation. In a previous paper [1], it was shown that the shape invariance, which is an integrability condition in SUSYQM formalism, can be utilized to develop an iterative algorithm to determine the quantum...

متن کامل

Quantum Hamilton-jacobi Formalism and the Bound State Spectra

It is well known in classical mechanics that, the frequencies of a periodic system can be obtained rather easily through the action variable, without completely solving the equation of motion. The equivalent quantum action variable appearing in the quantum Hamilton-Jacobi formalism, can, analogously provide the energy eigenvalues of a bound state problem, without having to solve the correspondi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003